[tex] \frac{xy}{x + y} = \frac{1}{2} \\ \frac{y}{z} - \frac{z}{3} = \frac{1}{3} \\ \frac{xz}{x + z} = \frac{1}{7} [/tex] tentukan nilai x, y, z tolon
Matematika
Rajasaf
Pertanyaan
[tex] \frac{xy}{x + y} = \frac{1}{2} \\ \frac{y}{z} - \frac{z}{3} = \frac{1}{3} \\ \frac{xz}{x + z} = \frac{1}{7} [/tex]
tentukan nilai x, y, z
tolong yaaa terima kasihhh
2 Jawaban
-
1. Jawaban abidinirsyadzinul
nilai X=yz ga bisa gua belum belajae -
2. Jawaban Anonyme
xy/(x + y) = 1/2
x + y = 2xy
y = 2xy - x
y = x(2y - 1)
x = y/(2y - 1) ... (1)
y/z - z/3 = 1/3
Kalikan 3z
3y - z² = z
3y = z² + z ... (2)
xz/(x + z) = 1/7
x + z = 7xz
z = 7xz - x
z = x(7z - 1)
x = z/(7z - 1) ... (3)
(1) = (2)
x = x
y/(2y - 1) = z/(7z - 1)
3y/3(2y - 1) = z/(7z - 1)
(z² + z) / (2(z² + z) - 3) = z/(7z - 1)
(z + 1) /(2z² + 2z - 3) = 1/(7z - 1)
Kalikan silang
2z² + 2z - 3 = 7z² + 6z - 1
5z² + 4z + 2 = 0
D < 0
Akar2 imajiner
#cek_soal